课程介绍
近年来,随着“人工智能”深入应用到社会各个行业,通过将对应的人工智能技术比如人脸识别,车牌识别等应用到具体的行业信息化领域,包括新兴互联网企业(如电商企业、搜索引擎、社交网站、互联网广告服务提供商等)、金融企业(银行、保险、证券公司、互联网金融借贷公司等)、通信运营商(电信、移动、联通)等行业的企业。在国内外形成了独具特色的智能产业和智能经济。“人工智能技术及其应用实战培训班”望各单位收到通知后组织相关人员参加。现将有关事宜通知如下:
本课程对业界主流最新的人工智能及其应用实战技术分成基础级、进阶级、高级实战三个层次进行系统化地培训,让学员分成三个阶段深入系统地掌握人工智能技术的应用
1)第一阶段:人工智能基础级培训内容,让学员掌握人工智能的基础知识,人工智能的问题解决思路,人工智能的应用案例,人工智能产业和人工智能产品的应用解决方案。
|
2)第二阶段:人工智能进阶级培训内容,让学员掌握人工智能中用到的机器学习方法和深度学习方法,包括有监督学习,无监督学习和半监督学习,以及决策树机器学习、朴素贝叶斯机器学习、神经网络机器学习、深度学习、巻积神经网络和LSTM神经网络机器学习的算法模型的原理和应用实践操作,每类算法模型在具体场景中的应用实践。
3)第三阶段:人工智能高级项目应用培训内容,让学员掌握人工智能的系统平台工具的应用实战,包括人工智能的代表性系统工具平台:TesorFlow深度学习平台,Keras深度学习库和PythonAl系统的应用实践,在讲解的同时,由讲师带着学员对人工智能工具安排实践操作,让学员更突出掌握实战技能。
培训目标
1、通过本课程的学习,学员可以用较短的时间掌握人工智能领域的基础和精华内容
2、让学员掌握人工智能的基础知识,人工智能的问题解决思路,人工智能的应用案例,人工智能产业和人工智能产品的应用解决方案。
3、让学员掌握人工智能的技术平台应用,重点包括PythonKeras,TensorFlow,PyTorch,,Theano,CNTK,Caffe等应用实战,并且通过两三个具体的企业应用实验操作,巩固掌握的Al技术和平台。
内容模块
课程介绍
授课详细内容
模块一
人工智能基础、技术及其体系
1.人工智能(Artificiallntelligence,Al)的定义、起源、用途
2.人工智能的发展历程与脉络
3.人工智能的国家政策解读
4.人工智能的技术体系
5.人工智能的技术框架
模块二
人工智能的问题求解及技术实现
6.人工智能领域的经典问题和求解方式
7.机器学习模型和推理符号模型
8.人工智能和大数据
9.人工智能和机器学习
10.人工智能和深度学习
模块三
人工智能的学习方式
11.有监督学习训练
12.无监督学习训练
13.半监督学习训练
模块四
人工智能的行业应用与发展
14.人工智能的行业图谱和行业发展割析
15.人工智能结合大数据的行业应用案例
16.人工智能在“互联网+”领域的应用
17.人工智能在制造业领域的应用
18.人工智能在金融、消费领域的应用
模块五
部署人工智能实验平台
19.部署人工智能实验操作软件和环境
20.运行讲师提供的人工智能简単示例验证环境的准确性
21.熟悉实验资料和实验环境
模块六
人工智能机器学习的算法模型的应用实践(1)
22.人工智能领域的四大类经典算法模型
23.神经网络机器学习算法模型及其应用
24.决策树算法模型及其应用
25.关联分析算法模型及其应用
26.聚类分析算法模型及其应用
27.深度学习算法模型及应用
28.CNN卷积神经网络算法模型及应用
模块七
人工智能机器学习的算法模型的应用实践(2)
29.朴素贝叶斯算法模型及其应用
30.逻辑回归算法模型及其预测应用
31.LSTM深度学习库的应用
32.Python机器学习库的应用
33.PythonScikit-learn算法库的使用讲解
模块八
人工智能和机器学习的实验操作
34.PythonScikit_learn算法库的实战操作
35.利用Python语言编程,实现分类预测项目
36.实验要求准确率、召回率、误差等指标
模块九
TensorFlowAl深度学习平台及其应用实践(1)
37.TensorFlow:一个Al深度学习框架的概述
38.TensorFlow深度学习平台的工作机制和系统架构
39.TensorFlow的安装、部署、配置和使用
40.TensorFlow的应用场景和应用案例
模块十
TensorFlowAl深度学习平台及其应用实践(2)
41.TensorFlowCNN应用操作
42.TensorFlowLSTM应用操作
43.TensorFlow在图像识别的实验操作
44.基于TensorFlow的可视化工具:Tensorboard简介
45.Tensorboard的部署、配置和应用界面操作
46.基于TensorFlow和Tensorboard进行实验操作
模块十一
Keras人工智能平台应用实践
47.业界常用的AI平台:Keras人工智能平台架构
48.KerasAl平台的部署与配置
49.Keras技术实现与工作机制
50.Keras实验操作
模块十二
项目实践
51.利用学过的知识,使用Python编程实现基本的人脸识别或讲师布置的AI实验项目
52.讲师提供项目指导手册,带着学员完成,学员独立完成后,讲师答疑
模块十三
培训内容综合、
应用完整实践与咨询讨论
53.根据讲师布置的实际应用案例,开展人工智能和大数据完整项目部署设计和应用开发实践、应用实施以及解决方案分享咨询与交流讨论
1、IT工程师2、技术总监3、人工智能架构师4、其它对人工智能和机器学习感兴趣的人员课程费用:7800元/人。(含培训费、资料费、考试费、证书费、讲义费等)。需要住宿学员请提前通知,可统一安排,费用自理。 上一篇:现代城市长租公寓开发与产品设计及运营管理国际研讨会