高度决定眼界、专业创造价值!中国规模最大、实力最强的培训服务提供商!

24小时服务热线:020-31041068

详细内容:当前的位置:首页 >> 公开课

“数”说营销—大数据挖掘与营销应用

  • 开课时间: 2021年9月3日 周五 2021年9月4日 周六 查看最新上课时间
  • 开课城市: 青岛
  • 培训时长:2天
  •  
  • 课程类别: 市场营销
  • 主讲老师:傅一航(查看该老师更多课程)
  • 课程编号: 63750
  • 查找同类课程
“数”说营销—大数据挖掘与营销应用其它上课时间:

培训对象:

销售部门、营业厅、呼叫中心、业务支撑、经营分析部、网管/网优中心、运营分析部、系统开发部等对业务数据分析有基本要求的相关岗位人员。

培训内容:


课程收获
1、了解大数据营销内容,掌握大数据在营销中的应用
2、了解基本的营销理论,并学会基于营销理念来展开大数据分析
3、熟悉数据挖掘的标准过程,掌握常用的数据挖掘方法
4、熟悉数据分析及数据挖掘工具,掌握Excel和SPSS软件应用操作
5、学会选择合适的分析模型来解决相应的营销问题
课程特色
理论精讲+案例演练+实际业务问题分析+Excel实践操作+SPSS实践操作
本课程由浅入深,结合原理主讲软件工具应用,不需要太深的数学知识,突出数据分析的实际应用,结合行业的典型应用特点,围绕实际的商业问题,进行大数据的收集与处理、数据分析与挖掘,以及数据呈现与报告撰写,全过程演练操作,以达到提升学员的数据综合分析能力,支撑运营决策的目的。

课程大纲


第一部分:大数据实现精准营销
1、传统营销的困境与挑战
2、营销理论的变革(4P4CnPnC)
3、大数据引领传统营销
4、大数据在营销中的典型应用
5、大数据营销的基石:用户画像
6、客户生存周期中的大数据应用
演练:如何用大数据来支撑手机精准营销项目
第二部分:大数据基础—数据思维篇
1、大数据时代:缺的不是一堆方法,而是大数据思维
2、大数据的本质
3、大数据四大核心价值
(1)用趋势图来探索产品销量规律
(2)从谷歌的GFT产品探索用户需求变化
(3)从大数据炒股看大数据如何探索因素的相关性
(4)阿里巴巴预测经济危机的到来
(5)从美国总统竞选看大数据对选民行为进行分析
4、大数据价值落地的三个关键环节
(1)业务数据化、数据信息化、信息策略化
案例:喜欢赚“差价”的营业员(用数据管理来识别)
第三部分:大数据精准营销—分析框架篇
1、数据分析简介
2、数据分析的六步曲
步骤1:明确目的--理清思路
步骤2:数据收集—理清思路
步骤3:数据预处理—寻找答案
步骤4:数据分析--寻找答案
步骤5:数据展示--观点表达
步骤6:报表撰写--观点表达
演练:如何用大数据来支撑手机精准营销项目
演练:如何构建一个良好的大数据分析框架
第四部分:用户行为分析—分析方法篇
1、大数据精准营销的前提:用户行为分析
2、数据分析方法的层次
(1)描述性分析法(对比/分组/结构/趋势/交叉…)
(2)相关性分析法(相关/方差/卡方…)
(3)预测性分析法(回归/时序/决策树/神经网络…)
(4)专题性分析法(聚类/关联/RFM模型/…)
3、统计分析基础
4、统计分析常用指标
(1)汇总方式:计数、求和、百分比(增跌幅)
(2)集中程度:均值、中位数、众数
(3)离散程度:极差、方差/标准差、IQR
(4)分布形态:偏度、峰度
5、基本分析方法及其适用场景
(1)对比分析(查看数据差距)
(2)分组分析(查看数据分布)
(3)结构分析(评估事物构成)
(4)趋势分析(发现事物随时间的变化规律)
(5)交叉分析(多维数据分析)
6、综合分析方法及其适用场景
(1)综合评价法(多维指标归一)
(2)杜邦分析法(关键因素分析-财务数据分析)
(3)漏斗分析法(关键流程环节分析)
(4)矩阵分析法(产品策略分析-象限图分析法)
7、最合适的分析方法才是硬道理
第五部分:用户行为分析—分析思路篇
1、常用分析思路模型
2、用户行为分析(5W2H分析思路)
案例讨论:结合公司情况,搭建用户消费习惯的分析框架(5W2H)

第六部分:影响因素分析—属性筛选篇
1、影响因素分析的常见方法
2、相关分析(衡量两数据型变量的线性相关性)
问题:这两个属性是否会相互影响?影响程度大吗?
(1)相关分析简介
(2)相关分析的应用场景
(3)相关分析的种类
(4)相关系数的三种计算公式
(5)相关分析的假设检验
(6)相关分析的四个基本步骤
演练:营销费用会影响销售额吗
演练:哪些因素与汽车销量有相关性
(7)偏相关分析
(8)距离相关分析
第七部分:产品销量预测—回归预测篇
1、销量预测与市场预测模型介绍
(1)时序预测
(2)回归模型
(3)季节性预测(相加/相乘模型)
(4)产品预测(珀尔曲线/龚铂兹曲线)
2、回归分析/回归预测
问题:如何预测未来的销售量(定量分析)?
(1)回归分析简介
(2)回归分析的种类(一元/多元、线性/曲线)
(3)得到回归方程的常用工具
演练:散点图找营销费用与销售额的关系(一元回归)
(4)线性回归分析的五个步骤
演练:营销费用、办公费用与销售额的关系(线性回归)
(5)解读线性回归分析结果的技巧
定性描述:正相关/负相关
定量描述:自变量变化导致因变量的变化程度
(6)回归预测模型质量评估
评估指标:判定系数R^2、标准误差
如何选择最佳回归模型
演练:如何选择最佳的回归预测模型(一元曲线回归)
(7)预测值准确性评估
MAD、MSE/RMSE、MAPE等
(8)带分类变量的回归预测
演练:汽车季度销量预测
演练:工龄、性别与终端销量的关系
演练:如何评估销售目标与资源配置(营业厅)

讲师介绍:

傅一航
华为营销大数据专家,500强企业数据分析师
实战经验
华为10年工作经验,五项国家专利,期间获得华为多项奖项,曾在英国、日本、荷兰等海外市场做项目,对大数据有深入的研究。近十年来一直从事通信行业的研究与分析,对通信行业的市场态势、客户行为、服务效果以及运营分析等方面有深入的研究。目前专注大数据分析与挖掘等应用技术,以及大数据系统部署解决方案,将大数据的数据分析、数据挖掘、数据建模应用于行业及商业领域,解决行业实际的问题。
授课特点
深入浅出的理论讲解(分析模型),使用简单实用的工具操作(分析工具),实现分析结果到业务策略的落地,实用性极强。
主讲课程
“数”说营销-大数据挖掘与营销应用、大数据产业现状及应用创新、Hadoop大数据解决方案开发技术基础培训、大数据时代的精准营销等。
服务客户
华为、平安集团、良品铺子、安能物流、东风日产、顺丰快递、中国移动、中国联通、中国电信、西部航空、富维江森、广州地铁、富士康、光大银行、招商银行、新时代集团……


博课在线客服关闭


线