本课程专注于金融行业的风控模型,面向数据分析部等专门负责数据分析与建模的人士。
通过本课程的学习,达到如下目的:
1、 掌握数据建模的基本过程和步骤。
2、 掌握数据建模前的属性筛选的系统方法,为建模打下基础。
3、 掌握常用的分类预测模型,包括逻辑回归、决策树、神经网络、判别分析等等,以及分类模型的优化。
4、 掌握金融行业信用评分卡模型,构建信用评分模型。
主要内容包括数据建模的过程和步骤,以及建模涉及到的分析方法、分析模型,以及模型优化等。
本课程突出数据挖掘的实际应用,结合行业的典型应用特点,从实际问题入手,引出相关知识,进行大数据的收集与处理;探索数据之间的规律及关联性,帮助学员掌握系统的数据预处理方法;介绍常用的模型,训练模型,并优化模型,以达到最优分析结果。
【授课时间】
2-3天时间(每天6个小时)
【学员要求】
1、 每个学员自备一台便携机(必须)。
2、 便携机中事先安装好Office Excel 2013版本及以上。
3、 便携机中事先安装好IBM SPSS Statistics v24版本以上软件。
注:讲师可以提供试用版本软件及分析数据源。
【授课方式】
基础知识精讲 + 案例演练 + 实际业务问题分析 + SPSS实际操作
第一部分: 数据建模基本过程
1、 预测建模六步法
Ø 选择模型:基于业务选择恰当的数据模型
Ø 属性筛选:选择对目标变量有显著影响的属性来建模
Ø 训练模型:采用合适的算法对模型进行训练,寻找到最合适的模型参数
Ø 评估模型:进行评估模型的质量,判断模型是否可用
Ø 优化模型:如果评估结果不理想,则需要对模型进行优化
Ø 应用模型:如果评估结果满足要求,则可应用模型于业务场景
2、 数据挖掘常用的模型
Ø 数值预测模型:回归预测、时序预测等
Ø 分类预测模型:逻辑回归、决策树、神经网络、支持向量机等
Ø 市场细分:聚类、RFM、PCA等
Ø 产品推荐:关联分析、协同过滤等
Ø 产品优化:回归、随机效用等
Ø 产品定价:定价策略/最优定价等
3、 属性筛选/特征选择/变量降维
Ø 基于变量本身特征
Ø 基于相关性判断
Ø 因子合并(PCA等)
Ø IV值筛选(评分卡使用)
Ø 基于信息增益判断(决策树使用)
4、 模型评估
Ø 模型质量评估指标:R^2、正确率/查全率/查准率/特异性等
Ø 预测值评估指标:MAD、MSE/RMSE、MAPE、概率等
Ø 模型评估方法:留出法、K拆交叉验证、自助法等
Ø 其它评估:过拟合评估
5、 模型优化
Ø 优化模型:选择新模型/修改模型
Ø 优化数据:新增显著自变量
Ø 优化公式:采用新的计算公式
6、 模型实现算法(暂略)
7、 好模型是优化出来的
案例:通信客户流失分析及预警模型
第二部分: 属性筛选方法
问题:如何选择合适的属性来进行建模预测?
比如:价格是否可用于产品销量的预测?套餐的合理性是否会影响客户流失?在欺诈风险中有哪些数据会有异常表现?
1、 属性筛选/变量降维的常用方法
Ø 基于变量本身特征来选择属性
Ø 基于数据间的相关性来选择属性
Ø 基于因子合并(如PCA分析)实现变量的合并
Ø 利用IV值筛选
Ø 基于信息增益来选择属性
2、 相关分析(衡量变量间的线性相关性)
问题:这两个属性是否会相互影响?影响程度大吗?
Ø 相关分析简介
Ø 相关分析的三个种类
² 简单相关分析
² 偏相关分析
² 距离相关分析
Ø 相关系数的三种计算公式
² Pearson相关系数
² Spearman相关系数
² Kendall相关系数
Ø 相关分析的假设检验
Ø 相关分析的四个基本步骤
演练:年龄和收入的相关分析
演练:营销费用会影响销售额吗
演练:工作时间与收入有相关性吗
演练:话费与网龄的相关分析
Ø 偏相关分析
² 偏相关原理:排除不可控因素后的两变量的相关性
² 偏相关系数的计算公式
² 偏相关分析的适用场景
Ø 距离相关分析
3、 方差分析(衡量类别变量与数据变量的相关性)
问题:哪些才是影响销量的关键因素?
Ø 方差分析的应用场景
Ø 方差分析的三个种类
² 单因素方差分析
² 多因素方差分析
² 协方差分析
Ø 方差分析的原理
Ø 方差分析的四个步骤
Ø 解读方差分析结果的两个要点
演练:用户收入对银行欠贷的影响分析
演练:家庭人数对银行欠贷的影响分析
演练:年龄大小对欠贷有影响吗
演练:寻找影响贷款风险的关键因素
Ø 多因素方差分析原理
Ø 多因素方差分析的作用
Ø 多因素方差结果的解读
演练:广告形式、地区对销量的影响因素分析(多因素)
Ø 协方差分析原理
Ø 协方差分析的适用场景
演练:饲料对生猪体重的影响分析(协方差分析)
4、 列联分析/卡方检验(两类别变量的相关性分析)
Ø 交叉表与列联表
Ø 卡方检验的原理
Ø 卡方检验的几个计算公式
Ø 列联表分析的适用场景
演练:不同的信用卡类型会有不同欠贷风险吗
演练:有无住房对欠贷的影响分析
案例:行业/规模对风控的影响分析
5、 相关性分析各种方法的适用场景
6、 主成份分析(PCA)
Ø 因子分析的原理
Ø 因子个数如何选择
Ø 如何解读因子含义
案例:提取影响电信客户流失的主成分分析
第三部分: 回归预测模型篇
问题:如何预测产品的销量/销售金额?如果产品跟随季节性变动,该如何预测?新产品上市,如果评估销量上限及销售增速?
1、 常用的数值预测模型
Ø 回归预测
Ø 时序预测
2、 回归预测/回归分析
问题:如何预测未来的销售量(定量分析)?
Ø 回归分析的基本原理和应用场景
Ø 回归分析的种类(一元/多元、线性/曲线)
Ø 得到回归方程的四种常用方法
² Excel函数
² 散点图+趋势线
² 线性回归工具
² 规范求解
Ø 线性回归分析的五个步骤
Ø 回归方程结果的解读要点
Ø 评估回归模型质量的常用指标
Ø 评估预测值的准确度的常用指标
演练:散点图找推广费用与销售额的关系(一元线性回归)
演练:推广费用、办公费用与销售额的关系(多元线性回归)
演练:让你的营销费用预算更准确
演练:如何选择最佳的回归预测模型(曲线回归)
Ø 带分类变量的回归预测
演练:汽车季度销量预测
演练:工龄、性别与终端销量的关系
演练:如何评估销售目标与资源配置(营业厅)
3、 自动筛选不显著自变量
第四部分: 回归预测模型优化篇
1、 回归分析的基本原理
Ø 三个基本概念:总变差、回归变差、剩余变差
Ø 方程的显著性检验:是否可以做回归分析?
Ø 因素的显著性检验:自变量是否可用?
Ø 拟合优度检验:回归模型的质量评估?
Ø 理解标准误差的含义:预测的准确性?
2、 回归模型优化思路:寻找最佳回归拟合线
Ø 如何处理预测离群值(剔除离群值)
Ø 如何剔除非显著因素(剔除不显著因素)
Ø 如何进行非线性关系检验(增加非线性自变量)
Ø 如何进行相互作用检验(增加相互作用自变量)
Ø 如何进行多重共线性检验(剔除共线性自变量)
Ø 如何检验误差项(修改因变量)
Ø 如何判断模型过拟合(模型过拟合判断)
案例:模型优化案例
3、 规划求解工具简介
4、 自定义回归模型(如何利用规划求解进行自定义模型)
案例:如何对餐厅客流量进行建模及模型优化
5、 好模型都是优化出来的
第五部分: 分类预测模型
问题:如何评估客户购买产品的可能性?或者说,影响客户购买意向的产品关键特性是什么?
1、 分类预测模型概述
2、 常见分类预测模型
3、 评估分类模型的常用指标
Ø 正确率、查全率/查准率、特异性等
4、 逻辑回归分析模型(LR)
问题:如果评估用户是否购买产品的概率?
Ø 逻辑回归模型原理及适用场景
Ø 逻辑回归的种类
² 二项逻辑回归
² 多项逻辑回归
Ø 如何解读逻辑回归方程
Ø 带分类自变量的逻辑回归分析
Ø 多项逻辑回归
案例:如何评估用户是否会有违约风险(二项逻辑回归)
案例:多品牌选择模型分析(多项逻辑回归)
5、 决策树分类(DT)
问题:如何提取客户流失者、拖欠货款者的特征?如何预测其流失的概率?
Ø 决策树分类的原理
Ø 决策树的三个关键问题
² 如何选择最佳属性来构建节点
² 如何分裂变量
² 如何修剪决策树
Ø 选择最优属性
² 熵、基尼索引、分类错误
² 属性划分增益
Ø 如何分裂变量
² 多元划分与二元划分
² 连续变量离散化(最优划分点)
Ø 修剪决策树
² 剪枝原则
² 预剪枝与后剪枝
Ø 构建决策树的四个算法
² C5.0、CHAID、CART、QUEST
² 各种算法的比较
Ø 如何选择最优分类模型?
案例:识别银行欠货风险,提取欠货者的特征
案例:客户流失预警与客户挽留模型
6、 人工神经网络(ANN)
Ø 神经网络概述
Ø 神经网络基本原理
Ø 神经网络的结构
Ø 神经网络的建立步骤
Ø 神经网络的关键问题
Ø BP反向传播网络(MLP)
Ø 径向基网络(RBF)
案例:评估银行用户拖欠货款的概率
7、 判别分析(DA)
Ø 判别分析原理
Ø 距离判别法
Ø 典型判别法
Ø 贝叶斯判别法
案例:MBA学生录取判别分析
案例:上市公司类别评估
8、 最近邻分类(KNN)
Ø 基本原理
Ø 关键问题
9、 贝叶斯分类(NBN)
Ø 贝叶斯分类原理
Ø 计算类别属性的条件概率
Ø 估计连续属性的条件概率
Ø 贝叶斯网络种类:TAN/马尔科夫毯
Ø 预测分类概率(计算概率)
案例:评估银行用户拖欠货款的概率
10、 支持向量机(SVM)
Ø SVM基本原理
Ø 线性可分问题:最大边界超平面
Ø 线性不可分问题:特征空间的转换
Ø 维空难与核函数
第六部分: 分类模型优化篇(集成方法)
1、 分类模型的优化思路:利用弱分类器构建强分类模型
2、 集成方法的基本原理
Ø 选取多个数据集,构建多个弱分类器
Ø 多个弱分类器投票决定
3、 集成方法/元算法的种类
Ø Bagging算法
Ø Boosting算法
4、 Bagging原理
Ø 如何选择数据集
Ø 如何进行投票
Ø 随机森林
5、 Boosting的原理
Ø AdaBoost算法流程
Ø 样本选择权重计算公式
Ø 分类器投票权重计算公式
第七部分: 银行信用评分卡模型
1、 信用评分卡模型简介
2、 评分卡的关键问题
3、 信用评分卡建立过程
Ø 筛选重要属性
Ø 数据集转化
Ø 建立分类模型
Ø 计算属性分值
Ø 确定审批阈值
4、 筛选重要属性
Ø 属性分段
Ø 基本概念:WOE、IV
Ø 属性重要性评估
5、 数据集转化
Ø 连续属性最优分段
Ø 计算属性取值的WOE
6、 建立分类模型
Ø 训练逻辑回归模型
Ø 评估模型
Ø 得到字段系数
7、 计算属性分值
Ø 计算补偿与刻度值
Ø 计算各字段得分
Ø 生成评分卡
8、 确定审批阈值
Ø 画K-S曲线
Ø 计算K-S值
Ø 获取最优阈值
案例:构建银行小额贷款的用户信用模型
第八部分: 数据预处理篇(了解你的数据集)
1、 数据预处理的主要任务
Ø 数据集成:多个数据集的合并
Ø 数据清理:异常值的处理
Ø 数据处理:数据筛选、数据精简、数据平衡
Ø 变量处理:变量变换、变量派生、变量精简
Ø 数据归约:实现降维,避免维灾难
2、 数据集成
Ø 外部数据读入:Txt/Excel/SPSS/Database
Ø 数据追加(添加数据)
Ø 变量合并(添加变量)
3、 数据理解(异常数据处理)
Ø 取值范围限定
Ø 重复值处理
Ø 无效值/错误值处理
Ø 缺失值处理
Ø 离群值/极端值处理
Ø 数据质量评估
4、 数据准备:数据处理
Ø 数据筛选:数据抽样/选择(减少样本数量)
Ø 数据精简:数据分段/离散化(减少变量的取值个数)
Ø 数据平衡:正反样本比例均衡
5、 数据准备:变量处理
Ø 变量变换:原变量取值更新,比如标准化
Ø 变量派生:根据旧变量生成新的变量
Ø 变量精简:降维,减少变量个数
6、 数据降维
Ø 常用降维的方法
Ø 如何确定变量个数
Ø 特征选择:选择重要变量,剔除不重要的变量
² 从变量本身考虑
² 从输入变量与目标变量的相关性考虑
² 对输入变量进行合并
Ø 因子分析(主成分分析)
² 因子分析的原理
² 因子个数如何选择
² 如何解读因子含义
案例:提取影响电信客户流失的主成分分析
7、 数据探索性分析
Ø 常用统计指标分析
Ø 单变量:数值变量/分类变量
Ø 双变量:交叉分析/相关性分析
Ø 多变量:特征选择、因子分析
演练:描述性分析(频数、描述、探索、分类汇总)
8、 数据可视化
Ø 数据可视化:柱状图、条形图、饼图、折线图、箱图、散点图等
Ø 图形的表达及适用场景
演练:各种图形绘制
第九部分: 数据建模实战篇
1、 电信业客户流失预警和客户挽留模型实战
2、 银行欠贷风险预测模型实战
3、 银行信用卡评分模型实战
结束:课程总结与问题答疑。
傅一航
华为系大数据专家
计算机软件与理论硕士研究生
(研究方向:数据挖掘、搜索引擎)
在华为工作十年,五项国家专利,在华为工作期间
获得华为数项奖项,曾在英国、日本、荷兰和比利
时等海外市场做项目,对大数据有深入的研究。
傅老师专注于大数据分析与挖掘、机器学习等应用技术,以及大数据系统部署解决方案。旨在将大数据的数据分析、数据挖掘、数据建模应用于行业及商业领域,解决行业实际的问题。
1、让决策更科学:将大数据应用于运营决策,用大数据探索领域发展规律和行业发展趋势,有效分析用户需求,并预测用户行为,最终实现市场变化预测,提升企业科学决策能力。
2、让管理更高效:将大数据应用于企业管理,用大数据呈现企业整体运营情况,诊断企业管理问题和风险,全面理解组织、产品、人员、营销、财务等要素间的相关性,实现企业资源的最优化配置,提升企业管理效率。
3、让营销更精准:将大数据应用于市场营销,解决营销中的用户群细分和品牌定位,客户价值评估,产品设计优化,产品最优定价等实际问题,实现精准营销和精准推荐,以最小的营销成本实现最大化的营销效果。
傅老师目前致力于将大数据技术应用于通信、金融、航空、电商、互联网、政府等领域。傅老师的课程最大特色:实战性强!“围绕业务问题+搭建分析框架+运用分析方法+建立分析模型+熟悉分析工具+形成业务策略”。以商业问题为起点,基于实际的业务应用场景(明确目的),搭建全面系统的业务框架和分析维度(分析思路),选择最合适的方法(分析方法),深入浅出的理论讲解(分析模型),使用简单实用的工具操作(分析工具),对分析结果进行有效的解读(数据可视化),最终形成具体的业务建议,实现业务分析/数据分析的闭环。
培训课题设计:
应用类:
《大数据分析与数据挖掘综合能力提升实战》
《“数”说营销----大数据营销实战与沙盘》
《市场营销大数据分析实战培训》
《大数据建模与模型优化实战培训》
《大数据分析与挖掘之SPSS工具入门与提高》
《金融行业风险预测模型实战培训》
理论/认知/战略类:
《大数据产业现状及应用创新》
《大数据思维与应用创新》
《大数据时代的精准营销》
技术类:
《Hadoop大数据解决方案开发技术基础培训》
《Python开发基础实战》
《大数据分析与挖掘之Python开发实战》
《Python机器学习算法原理及优化实现》
服务客户:
傅老师曾提供过培训咨询服务的客户遍及通信、金融、交通、制造、政府等行业,包括华为、富士康、平安集团、中国银行、招商银行、光大银行、中信银行、交通银行、广电银通、西部航空、海南航空、中国移动、中国联通、中国电信、西部航空、安能物流、广州地铁、富维江森、东风日产、神南矿业、公交集团、广州税务、良品铺子等单位和公司。
部分信息如下所示:
通信行业培训客户:
联通研究院:《大数据预测建模优化》
广州电信:《大数据时代的精准营销》两期
北京电信:《大数据分析综合能力提升》
香港电信:《大数据精准营销实战》
上海电信:《渠道大数据分析与挖掘思路及方法》两期
河北电信:《数据化运营下的大数据分析综合能力提升实战》
南京电信:《大数据视图支撑精准化营销》
佛山电信:《数据挖掘技术及其应用培训》
泉州电信:《大数据挖掘、信息分析及应用培训》
湖北联通:《大数据分析与商业智能》
广东联通:《数据分析与数据挖掘实战培训》两期
江苏联通:《大数据分析综合能力提升》
吉林联通:《大数据分析综合能力提升-中级》
乌鲁木齐联通:《大数据分析综合能力提升》
上海移动:《大数据分析与挖掘、建模及优化》叁期
浙江移动:《大数据分析与数据挖掘应用实战》
江苏移动:《大数据精准营销技能提升实战》
深圳移动:《大数据分析综合能力提升》
广西移动:《大数据发展趋势及在公司营销领域的应用》
辽宁移动2期:《数据分析方法与经营分析技巧》
泉州移动3期:《数说营销—市场营销数据分析与挖掘应用》
德阳移动2期:《大数据挖掘与建模优化实战培训》
浙江移动:《大数据产品营销能力提升》
四川移动:《大数据分析与挖掘综合能力提升》
吉林移动:《数据分析与数据挖掘培训》;
贵州移动:《“数”说营销----大数据营销实战与沙盘》
海南移动:《基于大数据运营的用户行为分析与精准定位》
山东移动:《大数据分析综合能力提升》
深圳移动:《大数据在行业内外的应用》
中国移动终端公司:《大数据分析综合能力提升培训》
中山移动:《“数”说营销----大数据营销实战与沙盘》
东莞移动:《“数”说营销----大数据营销实战与沙盘》
成都移动:《数字化运营下的数据分析与数据挖掘》
眉山移动2期:《大数据分析综合能力提升》
云浮移动:《大数据挖掘和信息提炼专项培训》
阳江移动:《小数据·大运营--运营数据的分析与挖掘》
德阳移动:《电信运营商市场营销数据挖掘应用典型案例》
陕西在线:《“数”说营销----大数据营销实战与沙盘》
四川在线:《“数”说营销----大数据营销实战与沙盘》
大连移动:《“数”说营销----大数据营销实战与沙盘》
内蒙古移动:《大数据分析与Hadoop大数据解决方案》
贵州中移通信:《SPSS数据分析与数据挖掘应用实战》
华为技术:《话务量预测与排班管理》
……
金融行业培训客户:
中国银行:《大数据变革与商业模式创新》《大数据时代的精准营销》
广发银行:《大数据下的精准营销实战》四期
中信银行:《大数据分析与挖掘综合能力提升实战》叁期
交通银行:《大数据时代的精准营销》
安信证券:《大数据时代下的金融发展》
平安集团:《大数据思维与应用创新》
平安产险:《大数据分析综合能力提升》
平安寿险:《大数据分析与应用实战》
平安银行:《大数据思维与应用创新》
农业银行:《Python大数据分析与挖掘》叁期
建设银行:《大数据思维与应用创新》两期
光大银行:《大数据分析与数据挖掘应用实战》四期
招商银行:《“数”说营销----大数据营销实战与沙盘》四期
杭州银货通科技:《大数据产业发展及应用创新》
广电银通:《大数据综合能力提升》
平安普惠金融:《Hadoop解决方案技术培训》
浦发银行:《大数据精准营销》
金融壹帐通:《大数据分析与挖掘综合能力提升实战》
中金所:《大数据思维与应用创新》
……
能源汽车交通行业培训客户:
一汽解放锡柴:《大数据思维与应用创新》
广东邮政:《大数据分析综合能力提升实战》
深圳水务:《大数据思维与应用创新》
宁夏国电:《大数据思维与应用》两期
柳州上汽五菱:《大数据下的精准营销实战》
东风商用:《数说营销实战》
东风日产:《大数据分析与数据挖掘应用实战》两期
富维江森(汽车):《数字化运营下的数据分析与数据挖掘应用培训》
广州地铁:《大数据分析与数据挖掘培训》两期
广州地铁:《数据分析与数据建模实战》两期
西部航空:《数字化运营下的数据分析与数据挖掘应用培训》
海南航空:《利用大数据营销提升航线收益》
南方航空:《大数据精准营销实战》两期
北京机场贵宾公司:《市场营销数据的分析》
深圳公交集团:《大数据与智慧交通》
延长壳牌:《大数据分析与挖掘综合能力提升》
神南矿业:《大数据产业发展与应用创新》
宝鸡国电:《大数据分析与挖掘》两期
顺丰快递:《大数据分析综合能力提升实战》
……
其它行业培训客户:
岭南集团:《大数据时代下的精准营销》
ABB:《大数据分析实战培训》
顶新国际:《大数据思维与应用创新》
索菲亚:《大数据分析实战培训》
玫琳凯:《大数据思维与应用》叁期
西部数据:《大数据分析综合能力提升》
无限极:《大数据分析综合能力提升》两期
雅图仕:《大数据分析综合能力提升》
施耐德:《大数据分析综合能力提升》叁期
广州税务:《大数据分析与挖掘实战》叁期
YKK吉田拉链:《大数据分析综合能力提升培训》
富士康:《数据分析综合能力提升培训》
贵州中烟:《互联网+时代的大数据思维》
深圳欣盛商:《电商大数据分析》
安能物流:《大数据挖掘分析及应用实战》
良品铺子:《大数据分析综合能力提升》两期
新时代集团:《问题的挖掘、分析—数据分析技巧》两期培训
挑战牧业:《大数据分析综合能力提升》
易鑫集团:《大数据分析综合能力提升》
赣州监狱:《大数据时代的营销》共三期培训
贺州学院:《大数据时代的人才培养》
……
业务支撑、网络中心、IT系统部、数据分析部等对业务数据分析有较高要求的相关专业人员。